Fluffy Publication Workflow: Preserving Humanities Research Data with the TextGrid Repository
This paper introduces a revised publication workflow for textual research data in the TextGrid Repository. This repository supports the accessibility and reusability of research outputs in the humanities. The new workflow simplifies the publication process by integrating familiar tools such as TEI, XPath, Git, and Jupyter Notebooks. This reduces the technical burden for users, while still ensuring metadata quality controls. For these reasons, we refer to the new workflow as fluffy, emphasising its ease of use.The workflow also allows for metadata enrichment without altering original data files, improving overall data and metadata quality and aligning with FAIR principles (Findable, Accessible, Interoperable, Reusable). By showcasing completed research projects, we demonstrate how the workflow enhances the discoverability and citation of published outputs. The paper concludes by outlining future steps to integrate the workflow with additional services, aiming for a more user-friendly experience and higher metadata quality. In diesem Beitrag wird ein überarbeiteter Publikationsablauf für textuelle Forschungsdaten im TextGrid Repository vorgestellt. Dieses Repository unterstützt die Zugänglichkeit und Wiederverwendbarkeit von Forschungsergebnissen in den Geisteswissenschaften. Der neue Workflow vereinfacht den Publikationsprozess durch die Integration bekannter Werkzeuge wie TEI, XPath, Git und Jupyter Notebooks. Dadurch wird der technische Aufwand für die Nutzer verringert, während gleichzeitig die Qualitätskontrolle der Metadaten gewährleistet ist. Aus diesen Gründen bezeichnen wir den neuen Workflow als fluffig und betonen damit seine Benutzerfreundlichkeit.Der Arbeitsablauf ermöglicht auch die Anreicherung von Metadaten, ohne dass die ursprünglichen Datendateien verändert werden müssen. Dadurch wird die Qualität der Daten und Metadaten insgesamt verbessert und den FAIR- Prinzipien (Findable, Accessible, Interoperable, Reusable) entsprochen. Anhand von abgeschlossenen Forschungsprojekten wird gezeigt, wie der Arbeitsablauf die Auffindbarkeit und Zitierbarkeit veröffentlichter Ergebnisse verbessert. Abschließend werden künftige Schritte zur Integration des Workflows mit zusätzlichen Diensten skizziert, um die Benutzerfreundlichkeit zu erhöhen und die Qualität der Metadaten zu verbessern.
Stefan Buddenbohm
August 28, 2025
Ler o artigo
The Music Encoding Initiative: Its Generation Workflows
This article explores the Music Encoding Initiative (MEI) by examining the workflows that support its generation and manipulation within musicological research. Since its creation to fill the absence of a standard for encoding musical works, MEI has evolved into a powerful, flexible XML framework capable of representing not only Western common music notation but also specialised systems such as mensural, neumatic, and tablature notations.This study underscores how the choice of workflow is never neutral: it profoundly shapes the quality, sustainability, and interoperability of encoded data. It analyzes three principal modes of generating MEI files—via web applications like Verovio and MEI Garage, through integrated software solutions such as MuseScore and Sibelius (enhanced by plugins), and using programmatic approaches that rely on command-line tools or programming libraries. Each method presents distinct advantages and limitations, depending on the user's technical expertise, the complexity of the repertoire, and the scale of the project.Beyond generation, the article also addresses tools for enriching and editing MEI files, from metadata completion with MerMEId to more advanced, interactive environments like Mei-Friend, which combine score visualization with direct XML editing. Special attention is given to the encoding of early music, highlighting initiatives that adapt MEI to the complexities of historical notations.Ultimately, the article emphasises that adopting MEI is not simply a technical choice but one that entails significant human and scholarly considerations. It calls for broader training and the thoughtful integration of automated workflows to ensure that digital music editions are both robust and aligned with open science principles.
Kévin Roger
August 26, 2025
Ler o artigo