- All
- Environment
- Informatics and Applied Mathematics
- Mathematics
- Mechanical engineering
- Social Sciences and Humanities
Mechanical engineering
JTCAM
[Journal of Theoretical, Computational and Applied Mechanics]
JTCAM
Journal of Theoretical, Computational and Applied Mechanics
Established in 2021, Journal of Theoretical, Computational and Applied Mechanics (JTCAM) welcomes research in English in the field of solid mechanics and mechanics of materials and structures. The journal publishes theoretical, numerical, applied and experimental research contributions on an ongoing basis.
- Director of publication: Bruno Sportisse
- Editorial Board: Laurence Brassart ; Shaocheng Ji ; Anna Pandolfi ; Alexander Popp ; Julien Réthoré ; Olivier Thomas ; Laszlo S. Toth
- Medium: electronic
- Frequency: continuous
- Date created: 2021
- Date of publication on Episciences: 2021
- eISSN: 2726-6141
- Subjects: Theoretical, Computational and Applied Mechanics
- Language of publication: English
- Review process: single blind or open peer review
- CC BY 4.0 licence
- Publisher: Inria
- Address: Domaine de Voluceau Rocquencourt, BP 105, 78153 Le Chesnay Cedex
- Country: France
- Contact: jtcam AT episciences.org
See website
Established in 2021, Journal of Theoretical, Computational and Applied Mechanics (JTCAM) welcomes research in English in the field of solid mechanics and mechanics of materials and structures. The journal publishes theoretical, numerical, applied and experimental research contributions on an ongoing basis.
- Director of publication: Bruno Sportisse
- Editorial Board: Laurence Brassart ; Shaocheng Ji ; Anna Pandolfi ; Alexander Popp ; Julien Réthoré ; Olivier Thomas ; Laszlo S. Toth
- Medium: electronic
- Frequency: continuous
- Date created: 2021
- Date of publication on Episciences: 2021
- eISSN: 2726-6141
- Subjects: Theoretical, Computational and Applied Mechanics
- Language of publication: English
- Review process: single blind or open peer review
- CC BY 4.0 licence
- Publisher: Inria
- Address: Domaine de Voluceau Rocquencourt, BP 105, 78153 Le Chesnay Cedex
- Country: France
- Contact: jtcam AT episciences.org
Latest articles
Efficient Update of Redundancy Matrices for Truss and Frame Structures
Redundancy matrices provide insights into the load carrying behavior of statically indeterminate structures. This information can be employed for the design and analysis of structures with regard to certain objectives, for example reliability, robustness, or adaptability. In this context, the structure is often iteratively examined with the help of slight adjustments. However, this procedure generally requires a high computational effort for the recalculation of the redundancy matrix due to the necessity of costly matrix operations. This paper addresses this problem by providing generic algebraic formulations for efficiently updating the redundancy matrix (and related matrices). The formulations include various modifications like adding, removing, and exchanging elements and are applicable to truss and frame structures. With several examples, we demonstrate the interaction between the formulas and their mechanical interpretation. Finally, a performance test for a scaleable structure is presented.
Krake, Tim
November 10, 2022
Read article
Photometric DIC: a unified framework for global Stereo Digital Image Correlation based on the construction of textured digital twins
An innovative approach allowing to rigorously address surface curvature and lighting effects in Digital Image Correlation (DIC) is proposed. We draw inspiration from the research work in Computer Vision (CV) regarding the physical modelling of a camera and adopt it to bring novel and significant capabilities for full-field measurements in experimental solid mechanics. It gives rise to a unified framework for global stereo DIC that we call Photometric DIC (PhDIC). It is based on the irradiance equation that relies on physical considerations and explicit assumptions, which stands for a clear breakthrough compared to the usual grey level conservation assumption. Most importantly, it allows to define a Digital Twin of the Region of Interest, which makes it possible to compare a model with different observations (real images taken from different viewpoints). This results in a consistent formalism throughout the framework, suitable for large-deformation and large-strain displacement measurements. The potential of PhDIC is illustrated on a real case. Multi-view images are first used to measure (or scan) the shape and albedo (sometimes called intrinsic texture) of an open-hole plate. The kinematic basis considered for the displacement measurement is associated to a Finite-Element mesh. Results for the shape and albedo measurement are compared for two completely different sets of pictures. Eventually, a large displacement of the structure is measured using a well-chosen single image.
Fouque, Raphaël
August 30, 2022
Read article